Requests
OpenRouter's request and response schemas are very similar to the OpenAI Chat API, with a few small differences. At a high level, OpenRouter normalizes the schema across models and providers so you only need to learn one.
Request Body
Here is the request schema as a TypeScript type. This will be the body of your POST request to the /api/v1/chat/completions
endpoint (see the quick start above for an example).
// Definitions of subtypes are below type Request = { // Either "messages" or "prompt" is required messages?: Message[]; prompt?: string; // If "model" is unspecified, uses the user's default model?: string; // See "Supported Models" section // Allows to force the model to produce specific output format. // See models page and note on this docs page for which models support it. response_format?: { type: 'json_object' }; stop?: string | string[]; stream?: boolean; // Enable streaming // See LLM Parameters (openrouter.ai/docs/parameters) max_tokens?: number; // Range: [1, context_length) temperature?: number; // Range: [0, 2] // Tool calling // Will be passed down as-is for providers implementing OpenAI's interface. // For providers with custom interfaces, we transform and map the properties. // Otherwise, we transform the tools into a YAML template. The model responds with an assistant message. // See models supporting tool calling: openrouter.ai/models?supported_parameters=tools tools?: Tool[]; tool_choice?: ToolChoice; // Advanced optional parameters seed?: number; // Integer only top_p?: number; // Range: (0, 1] top_k?: number; // Range: [1, Infinity) Not available for OpenAI models frequency_penalty?: number; // Range: [-2, 2] presence_penalty?: number; // Range: [-2, 2] repetition_penalty?: number; // Range: (0, 2] logit_bias?: { [key: number]: number }; top_logprobs: number; // Integer only min_p?: number; // Range: [0, 1] top_a?: number; // Range: [0, 1] // Reduce latency by providing the model with a predicted output // https://platform.openai.com/docs/guides/latency-optimization#use-predicted-outputs prediction?: { type: 'content'; content: string; }; // OpenRouter-only parameters // See "Prompt Transforms" section: openrouter.ai/docs/transforms transforms?: string[]; // See "Model Routing" section: openrouter.ai/docs/model-routing models?: string[]; route?: 'fallback'; // See "Provider Routing" section: openrouter.ai/docs/provider-routing provider?: ProviderPreferences; }; // Subtypes: type TextContent = { type: 'text'; text: string; }; type ImageContentPart = { type: 'image_url'; image_url: { url: string; // URL or base64 encoded image data detail?: string; // Optional, defaults to 'auto' }; }; type ContentPart = TextContent | ImageContentPart; type Message = | { role: 'user' | 'assistant' | 'system'; // ContentParts are only for the 'user' role: content: string | ContentPart[]; // If "name" is included, it will be prepended like this // for non-OpenAI models: `{name}: {content}` name?: string; } | { role: 'tool'; content: string; tool_call_id: string; name?: string; }; type FunctionDescription = { description?: string; name: string; parameters: object; // JSON Schema object }; type Tool = { type: 'function'; function: FunctionDescription; }; type ToolChoice = | 'none' | 'auto' | { type: 'function'; function: { name: string; }; };
The response_format
parameter ensures you receive a structured response from the LLM. The parameter is only supported by OpenAI models, Nitro models, and some others - check the providers on the model page on openrouter.ai/models to see if it's supported, and set require_parameters
to true in your Provider Preferences. See openrouter.ai/docs/provider-routing
Request Headers
OpenRouter allows you to specify an optional HTTP-Referer
header to identify your app and make it discoverable to users on openrouter.ai. You can also include an optional X-Title
header to set or modify the title of your app. Example:
fetch("https://openrouter.ai/api/v1/chat/completions", {
method: "POST",
headers: {
"Authorization": `Bearer ${OPENROUTER_API_KEY}`,
"HTTP-Referer": `${YOUR_SITE_URL}`, // Optional, for including your app on openrouter.ai rankings.
"X-Title": `${YOUR_SITE_NAME}`, // Optional. Shows in rankings on openrouter.ai.
"Content-Type": "application/json"
},
body: JSON.stringify({
"model": "mistralai/mixtral-8x7b-instruct",
"messages": [
{"role": "user", "content": "Who are you?"},
],
})
});
Model routing: If the model
parameter is omitted, the user or payer's default is used. Otherwise, remember to select a value for model
from the supported models or API, and include the organization prefix. OpenRouter will select the least expensive and best GPUs available to serve the request, and fall back to other providers or GPUs if it receives a 5xx response code or if you are rate-limited.
Streaming: Server-Sent Events (SSE) are supported as well, to enable streaming for all models. Simply send stream: true
in your request body. The SSE stream will occasionally contain a "comment" payload, which you should ignore (noted below).
Non-standard parameters: If the chosen model doesn't support a request parameter (such as logit_bias
in non-OpenAI models, or top_k
for OpenAI), then the parameter is ignored. The rest are forwarded to the underlying model API.
Assistant Prefill: OpenRouter supports asking models to complete a partial response. This can be useful for guiding models to respond in a certain way.
To use this features, simply include a message with role: "assistant"
at the end of your messages
array. Example:
fetch("https://openrouter.ai/api/v1/chat/completions", {
method: "POST",
headers: {
"Authorization": `Bearer ${OPENROUTER_API_KEY}`,
"HTTP-Referer": `${YOUR_SITE_URL}`, // Optional, for including your app on openrouter.ai rankings.
"X-Title": `${YOUR_SITE_NAME}`, // Optional. Shows in rankings on openrouter.ai.
"Content-Type": "application/json"
},
body: JSON.stringify({
"model": "mistralai/mixtral-8x7b-instruct",
"messages": [
{"role": "user", "content": "Who are you?"},
{"role": "assistant", "content": "I'm not sure, but my best guess is"},
],
})
});
Images & Multimodal Requests
Multimodal requests are only available via the /api/v1/chat/completions
API with a multi-part messages
parameter. The image_url
can either be a URL or a data-base64 encoded image. Example:
...
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What's in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
}
}
]
}
]
Sample LLM's response:
{ "choices": [ { "role": "assistant", "content": "This image depicts a scenic natural landscape featuring a long wooden boardwalk that stretches out through an expansive field of green grass. The boardwalk provides a clear path and invites exploration through the lush environment. The scene is surrounded by a variety of shrubbery and trees in the background, indicating a diverse plant life in the area." } ] }
Uploading base64 encoded images
For locally stored images, you can send them to the model using base64 encoding. Here's an example:
import { readFile } from 'fs/promises'; const getFlowerImage = async (): Promise<string> => { const imagePath = new URL('flower.jpg', import.meta.url); const imageBuffer = await readFile(imagePath); const base64Image = imageBuffer.toString('base64'); return `data:image/jpeg;base64,${base64Image}`; }; ... 'messages': [ { role: 'user', content: [ { type: 'text', text: "What's in this image?", }, { type: 'image_url', image_url: { url: `${await getFlowerImage()}`, }, }, ], }, ];
When sending data-base64 string, ensure it contains the content-type of the image. Example:

Supported content types are:
- image/png
- image/jpeg
- image/webp
Tool Calls
Tool calls (also known as function calling) allow you to give an LLM access to external tools. The LLM does not call the tools directly. Instead, it suggests the tool to call. The user then calls the tool separately and provides the results back to the LLM. Finally, the LLM formats the response into an answer to the user's original question.
An example of the five-turn sequence:
- The user asks a question, while supplying a list of available
tools
in a JSON schema format:
...
"messages": [{
"role": "user",
"content": "What is the weather like in Boston?"
}],
"tools": [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": [
"celsius",
"fahrenheit"
]
}
},
"required": [
"location"
]
}
}
}],
- The LLM responds with tool suggestion, together with appropriate arguments:
// Some models might include their reasoning in content
"message": {
"role": "assistant",
"content": null,
"tool_calls": [
{
"id": "call_9pw1qnYScqvGrCH58HWCvFH6",
"type": "function",
"function": {
"name": "get_current_weather",
"arguments": "{ \"location\": \"Boston, MA\"}"
}
}
]
},
- The user calls the tool separately:
const weather = await getWeather({ location: 'Boston, MA' }); console.log(weather); // { "temperature": "22", "unit": "celsius", "description": "Sunny"}
- The user provides the tool results back to the LLM:
...
"messages": [
{
"role": "user",
"content": "What is the weather like in Boston?"
},
{
"role": "assistant",
"content": null,
"tool_calls": [
{
"id": "call_9pw1qnYScqvGrCH58HWCvFH6",
"type": "function",
"function": {
"name": "get_current_weather",
"arguments": "{ \"location\": \"Boston, MA\"}"
}
}
]
},
{
"role": "tool",
"name": "get_current_weather",
"tool_call_id": "call_9pw1qnYScqvGrCH58HWCvFH6",
"content": "{\"temperature\": \"22\", \"unit\": \"celsius\", \"description\": \"Sunny\"}"
}
],
- The LLM formats the tool result into a natural language response:
... "message": { "role": "assistant", "content": "The current weather in Boston, MA is sunny with a temperature of 22°C." }
OpenRouter standardizes the tool calling interface. However, different providers and models may support less tool calling features and arguments. (ex: tool_choice
, tool_use
, tool_result
)
Stream Cancellation
For some providers, streaming requests can be canceled by aborting the connection or simply disconnecting.
When aborting the connection to a provider that supports stream cancellation, the model will stop processing the request, and billing will stop as soon as the upstream provider detects the disconnection.
If you're using the Fetch API, you can use the AbortController to cancel the stream. Here's an example:
const controller = new AbortController(); fetch('https://openrouter.ai/api/v1/chat/completions', { method: 'POST', headers: ..., body: ..., signal: controller.signal }) ... // Later, to cancel the stream: controller.abort();
NOTE: Aborting/disconnecting from a non-stream request or a stream request to a provider that does not support stream cancellation will not halt the model's processing in the background. You will still be billed for the rest of the completion.